Bibliography

Bibliography#

[1]

Thibaut Prod'homme, Frédéric Lemmel, Matej Arko, Benoit Serra, Elizabeth George, Enrico Biancalani, Hans Smit, and David Lucsanyi. Pyxel: the collaborative detection simulation framework. In Andrew D. Holland and James Beletic, editors, X-Ray, Optical, and Infrared Detectors for Astronomy IX, volume 11454, 26 – 35. International Society for Optics and Photonics, SPIE, 2020. URL: https://doi.org/10.1117/12.2561731, doi:10.1117/12.2561731.

[2]

James R. Janesick. Scientific Charge-Coupled Devices. SPIE Press, Bellingham, Washington, 2001. ISBN 0-8194-3698-4. doi:10.1117/3.374903.

[3]

Arun Kannawadi, Charles A. Shapiro, Rachel Mandelbaum, Christopher M. Hirata, Jeffrey W. Kruk, and Jason D. Rhodes. The impact of interpixel capacitance in CMOS detectors on PSF shapes and implications for WFIRST. Publications of the Astronomical Society of the Pacific, 128(967):095001, jun 2016. URL: https://doi.org/10.1088/1538-3873/128/967/095001, doi:10.1088/1538-3873/128/967/095001.

[4]

Jonas Zmuidzinas. Superconducting microresonators: physics and applications. Annual Review of Condensed Matter Physics, 3(1):169–214, 2012. URL: https://doi.org/10.1146/annurev-conmatphys-020911-125022, arXiv:https://doi.org/10.1146/annurev-conmatphys-020911-125022, doi:10.1146/annurev-conmatphys-020911-125022.

[5]

Mazin lab website. http://web.physics.ucsb.edu/\~bmazin.

[6]

Charles-Antoine Claveau, Michael Bottom, Shane Jacobson, Klaus Hodapp, Aidan Walk, Markus Loose, Ian Baker, Egle Zemaityte, Matthew Hicks, Keith Barnes, Richard Powell, Ryan Bradley, and Eric Moore. First tests of a 1 megapixel near-infrared avalanche photodiode array for ultra-low background space astronomy. 2022. arXiv:2208.11834.

[7]

xarray: N-D labeled arrays and datasets in Python. https://docs.xarray.dev/en/stable/.

[8]

PyGMO2, the Python Parallel Global Multiobjective Optimizer. https://esa.github.io/pygmo2/.

[9]

James R. Janesick. Photon Transfer. SPIE Press, 2007. ISBN 9780819478382. PDF ISBN: 9780819478382, Print ISBN: 9780819467225. doi:https://doi.org/10.1117/3.725073.

[10]

Marshall D. Perrin, Rémi Soummer, Erin M. Elliott, Matthew D. Lallo, and Anand Sivaramakrishnan. Simulating point spread functions for the James Webb Space Telescope with WebbPSF. In Mark C. Clampin, Giovanni G. Fazio, Howard A. MacEwen, and Jacobus M. Oschmann Jr., editors, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, volume 8442, 84423D. International Society for Optics and Photonics, SPIE, 2012. URL: https://doi.org/10.1117/12.925230, doi:10.1117/12.925230.

[11]

Dávid Lucsányi and Thibaut Prod’homme. Simulating charge deposition by cosmic rays inside astronomical imaging detectors. IEEE Transactions on Nuclear Science, 67(7):1623–1628, 2020. doi:10.1109/TNS.2020.2986285.

[12]

Mikhail Konnik and James Welsh. High-level numerical simulations of noise in ccd and cmos photosensors: review and tutorial. 2014. URL: https://arxiv.org/abs/1412.4031, doi:10.48550/ARXIV.1412.4031.

[13]

Y.P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34(1):149–154, 1967. URL: https://www.sciencedirect.com/science/article/pii/0031891467900626, doi:https://doi.org/10.1016/0031-8914(67)90062-6.

[14]

William E. Tennant, Donald L. Lee, Majid Zandian, Eric C. Piquette, and Michael Carmody. Mbe hgcdte technology: a very general solution to ir detection, described by “rule 07”, a very convenient heuristic. Journal of Electronic Materials, 37:1406–1410, 2008.

[15]

Ian Baker, Chris Maxey, Les Hipwood, Vincent Isgar, Harald Weller, Mark Herrington, and Keith Barnes. Linear-mode avalanche photodiode arrays in HgCdTe at Leonardo, UK: the current status. In Nibir K. Dhar, Achyut K. Dutta, and Sachidananda R. Babu, editors, Image Sensing Technologies: Materials, Devices, Systems, and Applications VI, volume 10980, 81 – 90. International Society for Optics and Photonics, SPIE, 2019. URL: https://doi.org/10.1117/12.2519830, doi:10.1117/12.2519830.

[16]

Alexandre Le Roch, Cédric Virmontois, Philippe Paillet, Jean-Marc Belloir, Serena Rizzolo, Federico Pace, Clémentine Durnez, Pierre Magnan, and Vincent Goiffon. Radiation-induced leakage current and electric field enhancement in cmos image sensor sense node floating diffusions. IEEE Transactions on Nuclear Science, 66(3):616–624, 2019. doi:10.1109/TNS.2019.2892645.

[17]

Jean-Marc Belloir, Vincent Goiffon, Cédric Virmontois, Mélanie Raine, Philippe Paillet, Olivier Duhamel, Marc Gaillardin, Romain Molina, Pierre Magnan, and Olivier Gilard. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated cmos image sensors. Opt. Express, 24(4):4299–4315, Feb 2016. URL: https://opg.optica.org/oe/abstract.cfm?URI=oe-24-4-4299, doi:10.1364/OE.24.004299.

[18]

Simon Tulloch, Elizabeth George, and ESO Detector Systems Group. Predictive model of persistence in h2rg detectors. Journal of Astronomical Telescopes, Instruments, and Systems, 5(03):1, Sep 2019. URL: http://dx.doi.org/10.1117/1.JATIS.5.3.036004, doi:10.1117/1.jatis.5.3.036004.

[19]

Rupert H. Dodkins, Kristina K. Davis, Briley Lewis, Sumedh Mahashabde, Benjamin A. Mazin, Isabel A. Lipartito, Neelay Fruitwala, Kieran O'Brien, and Niranjan Thatte. First Principle Simulator of a Stochastically Varying Image Plane for Photon-counting High Contrast Applications. Publications of the Astronomical Society of the Pacific, 132(1016):104503, October 2020. arXiv:2007.15274, doi:10.1088/1538-3873/aba9e4.

[20]

A. Short, C. Crowley, J. H. J. de Bruijne, and T. Prod'homme. An analytical model of radiation-induced Charge Transfer Inefficiency for CCD detectors. Monthly Notices of the Royal Astronomical Society, 430(4):3078–3085, 2013. doi:10.1093/mnras/stt114.

[21]

Richard Massey. Charge transfer inefficiency in the Hubble Space Telescope since Servicing Mission 4. Monthly Notices of the Royal Astronomical Society: Letters, 409(1):L109–L113, 11 2010. URL: https://doi.org/10.1111/j.1745-3933.2010.00959.x, arXiv:https://academic.oup.com/mnrasl/article-pdf/409/1/L109/3226021/409-1-L109.pdf, doi:10.1111/j.1745-3933.2010.00959.x.

[22]

Richard Massey, Tim Schrabback, O. Cordes, Ole Marggraf, Holger Israel, Lance Miller, David Hall, Mark Cropper, Thibaut Prod'homme, and Sami Niemi. An improved model of charge transfer inefficiency and correction algorithm for the hubble space telescope. Monthly Notices of the Royal Astronomical Society, 439:, 01 2014. doi:10.1093/mnras/stu012.

[23]

Bernard J. Rauscher. Teledyne H1RG, H2RG, and H4RG Noise Generator. Publications of the Astronomical Society of the Pacific, 127(957):1144, 2015. URL: http://stacks.iop.org/1538-3873/127/i=957/a=1144.

[24]

A.A. Plazas, C. Shapiro, R. Smith, J. Rhodes, and E. Huff. Nonlinearity and pixel shifting effects in HXRG infrared detectors. Journal of Instrumentation, 12(04):C04009–C04009, apr 2017. URL: https://doi.org/10.1088/1748-0221/12/04/c04009, doi:10.1088/1748-0221/12/04/c04009.

[25]

O. Boulade T. Pichon, T. Le Goff. Pyxel: CMOS detector non-linearities. personal communication.

[27]

Steven A. H. de Rooij, Jochem J. A. Baselmans, Vignesh Murugesan, David J. Thoen, and Pieter J. de Visser. Strong reduction of quasiparticle fluctuations in a superconductor due to decoupling of the quasiparticle number and lifetime. Phys. Rev. B, 104:L180506, Nov 2021. URL: https://link.aps.org/doi/10.1103/PhysRevB.104.L180506, doi:10.1103/PhysRevB.104.L180506.