Outputs#
- class pyxel.outputs.ExposureOutputs(output_folder, custom_dir_name='', save_data_to_file=None, save_exposure_data=None)[source]#
Bases:
Outputs
Collection of methods to save the data buckets from a Detector for an Exposure pipeline.
- Parameters:
output_folder (
str
orPath
) – Folder where sub-folder(s) that will be created to save data buckets.custom_dir_name (
str
, optional) – Prefix of the sub-folder name that will be created in the ‘output_folder’ folder. The default prefix is run_.save_data_to_file (
Dict
) – Dictionary where key is a ‘data bucket’ name (e.g. ‘detector.photon.array’) and value is the data format (e.g. ‘fits’).Example: {‘detector.photon.array’: ‘fits’, ‘detector.charge.array’: ‘hdf’, ‘detector.image.array’:’png’}
- save_exposure_outputs(dataset)[source]#
Save the observation outputs such as the dataset.
- Parameters:
dataset (
Dataset
)
- build_filenames(filename_suffix=None)#
Generate a list of output filename(s).
Examples
>>> output = Outputs( ... output_folder="output", ... save_data_to_file=[ ... {"detector.photon.array": ["fits", "hdf"]}, ... {"detector.charge.array": ["png"]}, ... ], ... )
>>> output.build_filenames() [Path('detector_photon.fits'), Path('detector_photon.hdf'), Path('detector_charge.png')]
- count_files_to_save()#
Count number of file(s) to be saved.
- create_output_folder()#
Create the output folder.
- property current_output_folder#
Get directory where all outputs are saved.
- property custom_dir_name#
- property output_folder#
- save_to_csv(data, name, with_auto_suffix=True, run_number=None)#
Write Pandas Dataframe or Numpy array to a CSV file.
- save_to_file(processor, prefix=None, with_auto_suffix=True, run_number=None)#
- save_to_fits(data, name, with_auto_suffix=True, run_number=None, header=None)#
Write array to FITS file.
- save_to_hdf(data, name, with_auto_suffix=True, run_number=None)#
Write detector object to HDF5 file.
- save_to_jpeg(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a JPEG image file.
- save_to_jpg(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a JPG image file.
- save_to_netcdf(data, name, with_auto_suffix=False)#
Write Xarray dataset to NetCDF file.
- save_to_npy(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to Numpy binary npy file.
- save_to_png(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a PNG image file.
- save_to_txt(data, name, with_auto_suffix=True, run_number=None)#
Write data to txt file.
- class pyxel.outputs.ObservationOutputs(output_folder, custom_dir_name='', save_data_to_file=None, save_observation_data=None)[source]#
Bases:
Outputs
Collection of methods to save the data buckets from a Detector for an Observation pipeline.
- Parameters:
output_folder (
str
orPath
) – Folder where sub-folder(s) that will be created to save data buckets.custom_dir_name (
str
, optional) – Prefix of the sub-folder name that will be created in the ‘output_folder’ folder. The default prefix is run_.save_data_to_file (
Dict
) – Dictionary where key is a ‘data bucket’ name (e.g. ‘detector.photon.array’) and value is the data format (e.g. ‘fits’).Example: {‘detector.photon.array’: [‘fits’], ‘detector.charge.array’: [‘hdf’], ‘detector.image.array’:[‘png’]}
- property save_observation_data#
- build_filenames(filename_suffix=None)#
Generate a list of output filename(s).
Examples
>>> output = Outputs( ... output_folder="output", ... save_data_to_file=[ ... {"detector.photon.array": ["fits", "hdf"]}, ... {"detector.charge.array": ["png"]}, ... ], ... )
>>> output.build_filenames() [Path('detector_photon.fits'), Path('detector_photon.hdf'), Path('detector_charge.png')]
- count_files_to_save()#
Count number of file(s) to be saved.
- create_output_folder()#
Create the output folder.
- property current_output_folder#
Get directory where all outputs are saved.
- property custom_dir_name#
- property output_folder#
- save_to_csv(data, name, with_auto_suffix=True, run_number=None)#
Write Pandas Dataframe or Numpy array to a CSV file.
- save_to_file(processor, prefix=None, with_auto_suffix=True, run_number=None)#
- save_to_fits(data, name, with_auto_suffix=True, run_number=None, header=None)#
Write array to FITS file.
- save_to_hdf(data, name, with_auto_suffix=True, run_number=None)#
Write detector object to HDF5 file.
- save_to_jpeg(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a JPEG image file.
- save_to_jpg(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a JPG image file.
- save_to_netcdf(data, name, with_auto_suffix=False)#
Write Xarray dataset to NetCDF file.
- save_to_npy(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to Numpy binary npy file.
- save_to_png(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a PNG image file.
- save_to_txt(data, name, with_auto_suffix=True, run_number=None)#
Write data to txt file.
- class pyxel.outputs.CalibrationOutputs(output_folder, custom_dir_name='', save_data_to_file=None, save_calibration_data=None)[source]#
Bases:
Outputs
Collection of methods to save the data buckets from a Detector for a Calibration pipeline.
- Parameters:
output_folder (
str
orPath
) – Folder where sub-folder(s) that will be created to save data buckets.custom_dir_name (
str
, optional) – Prefix of the sub-folder name that will be created in the ‘output_folder’ folder. The default prefix is run_.save_data_to_file (
Dict
) – Dictionary where key is a ‘data bucket’ name (e.g. ‘detector.photon.array’) and value is the data format (e.g. ‘fits’).Example: {‘detector.photon.array’: ‘fits’, ‘detector.charge.array’: ‘hdf’, ‘detector.image.array’:’png’}
- build_filenames(filename_suffix=None)#
Generate a list of output filename(s).
Examples
>>> output = Outputs( ... output_folder="output", ... save_data_to_file=[ ... {"detector.photon.array": ["fits", "hdf"]}, ... {"detector.charge.array": ["png"]}, ... ], ... )
>>> output.build_filenames() [Path('detector_photon.fits'), Path('detector_photon.hdf'), Path('detector_charge.png')]
- count_files_to_save()#
Count number of file(s) to be saved.
- create_output_folder()#
Create the output folder.
- property current_output_folder#
Get directory where all outputs are saved.
- property custom_dir_name#
- property output_folder#
- save_to_csv(data, name, with_auto_suffix=True, run_number=None)#
Write Pandas Dataframe or Numpy array to a CSV file.
- save_to_file(processor, prefix=None, with_auto_suffix=True, run_number=None)#
- save_to_fits(data, name, with_auto_suffix=True, run_number=None, header=None)#
Write array to FITS file.
- save_to_hdf(data, name, with_auto_suffix=True, run_number=None)#
Write detector object to HDF5 file.
- save_to_jpeg(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a JPEG image file.
- save_to_jpg(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a JPG image file.
- save_to_netcdf(data, name, with_auto_suffix=False)#
Write Xarray dataset to NetCDF file.
- save_to_npy(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to Numpy binary npy file.
- save_to_png(data, name, with_auto_suffix=True, run_number=None)#
Write Numpy array to a PNG image file.
- save_to_txt(data, name, with_auto_suffix=True, run_number=None)#
Write data to txt file.